Prediction Model Graduation Student with Naive Bayes Algorithm
DOI:
https://doi.org/10.36312/panthera.v6i1.876Keywords:
Graduation, Model, Naïve Bayes, Prediction, StudentAbstract
One of indicator important in evaluation quality something college tall is level graduation students. Graduation rate appropriate time students become a reflection from the quality of the learning process which ultimately also influences accreditation institutions or study program. The purpose of this research is to analyze how to increase student graduation rates and reduce dropout rates through more accurate and effective data-based policy recommendations. There are Lots factor affecting graduation student so that need determined factors significant influence level graduation said. With do analysis to data and predictions graduation students, institutions expected can give appropriate intervention for increase level graduates and identify at-risk students experience late graduation. In research this using the Naïve Bayes method for predict graduation student based on various factors. The data used in study this is the data obtained from students of the Mathematics Education Study Program, Faculty of Teacher Training and Education, HKBP Nommensen University. The results of study this show accuracy 80%, precision 88.24%, and recall 88.24%.
Downloads
References
Akanbi, O. B. (2023). Application of Naive Bayes to Students’ Performance Classification. Asian Journal of Probability and Statistics, 25(1), 35-47. https://doi.org/10.9734/ajpas/2023/v25i1536
Allaam, M. R. R. (2021). Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN). In e-Proceeding of Engineering (pp. 3147-3179). Bandung, Indonesia: Program Studi Sarjana Informatika, Fakultas Informatika, Universitas Telkom.
Anwarudin, A., Andriyani, W., DP, B. P., & Kristomo, D. (2022). The Prediction on the Students’ Graduation Timeliness Using Naive Bayes Classification and K-Nearest Neighbor. Journal of Intelligent Software Systems, 1(1), 75-88. https://dx.doi.org/10.26798/jiss.v1i1.597
Awaludin, M., Yasin, V., & Wahyuningsih, M. (2022). Optimization of Naïve Bayes Algorithm Parameters for Student Graduation Prediction at Universitas Dirgantara Marsekal Suryadarma. Journal of Information System, Informatic and Computing, 6(1), 91-106. https://doi.org/10.52362/jisicom.v6i1.785
Azahari, A., Yulindawati, Y., Rosita, D., & Mallala, S. (2020). Komparasi Data Mining Naive Bayes dan Neural Network Memprediksi Masa Studi Mahasiswa S1. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(3), 443-452. https://doi.org/10.25126/jtiik.2020732093
Bakri, R., Astuti, N. P., & Ahmar, A. S. (2022). Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-Time: A Case Study in Higher Education. Journal of Applied Science, Engineering, Technology, and Education, 4(2), 259-265. https://doi.org/10.35877/454RI.asci1581
Basuki, M. (2023). Kontribusi Mahasiswa dalam Akreditasi Program Studi. Nusantara: Jurnal Pengabdian kepada Masyarakat, 3(2), 48-54. https://doi.org/10.55606/nusantara.v3i2.1038
Dikriani, D., & Karim, A. T. I. (2023). Comparison of C4.5 and Naive Bayes Algorithm Methods in Prediction of Student Graduation on Time (Case Study: Information Systems Study Program). Journal of Dinda: Data Science, Information Technology, and Data Analytics, 3(1), 40-44. https://doi.org/10.20895/dinda.v3i1.782
Gunawan, G., Hanes, H., & Catherine, C. (2021). C4.5, K-Nearest Neighbor, Naïve Bayes, and Random Forest Algorithms Comparison to Predict Students’ on Time Graduation. Indonesian Journal of Artificial Intelligence and Data Mining, 4(2), 62-71. http://dx.doi.org/10.24014/ijaidm.v4i2.10833
Hussen, A. A. M. E., & Saikhu, A. (2024). Modeling of Student Graduation Prediction Using the Naive Bayes Classifier Algorithm. In 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT) (pp. 1-8). Surabaya, Indonesia: Institut Teknologi Sepuluh Nopember.
Issah, I., Appiah, O., Appiahene, P., & Inusah, F. (2023). A Systematic Review of the Literature on Machine Learning Application of Determining the Attributes Influencing Academic Performance. Decision Analytics Journal, 7, 100204. https://doi.org/10.1016/j.dajour.2023.100204
Jananto, A., Sulastri, S., Wahyudi, E. N., & Sunardi, S. (2021). Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus Menggunakan Algoritma CART Klasifikasi Data Mining. Jurnal Sisfokom (Sistem Informasi dan Komputer), 10(1), 71-78. https://doi.org/10.32736/sisfokom.v10i1.991
Kartianom, K., Arpandi, A., Kassymova, G. K., & Ndayizeye, O. (2022). Prediction Model of Teacher Candidate Student Graduation Status: Decision Tree C4. 5, Naive Bayes, and k-NN. Ekspose: Jurnal Penelitian Hukum dan Pendidikan, 21(2), 1419-1427. https://doi.org/10.30863/ekspose.v21i2.3407
Khasanah, N., Salim, A., Afni, N., Komarudin, R., & Maulana, Y. I. (2022). Prediksi Kelulusan Mahasiswa dengan Metode Naïve Bayes. Technologia Jurnal Ilmiah, 13(3) 207-214. https://doi.org/10.31602/tji.v13i3.7312
Legowo, M. B., & Indiarto, B. (2017). Model Sistem Penjaminan Mutu Berbasis Integrasi Standar Akreditasi BAN-PT dan ISO 9001:2008. Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), 1(2), 90-98. https://doi.org/10.29207/resti.v1i2.51
Marzuqi, A., Laksitowening, K. A., & Asror, I. (2021). Temporal Prediction on Students’ Graduation using Naïve Bayes and K-Nearest Neighbor Algorithm. Jurnal Media Informatika Budidarma, 5(2), 682-686. https://doi.org/10.30865/mib.v5i2.2919
Mehdi, R., & Nachouki, M. (2023). A Neuro-Fuzzy Model for Predicting and Analyzing Student Graduation Performance in Computing Programs. Education and Information Technologies, 28(3), 2455-2484. https://doi.org/10.1007/s10639-022-11205-2
Mehta, S. (2023). Playing Smart with Numbers: Predicting Student Graduation Using the Magic of Naive Bayes. International Transactions on Artificial Intelligence, 2(1), 60-75. https://doi.org/10.33050/italic.v2i1.405
Mulyana, D. (2006). Metodologi Penelitian Kualitatif: Paradigma Baru Ilmu Komunikasi dan Ilmu Sosial Lainnya. Bandung Barat: PT. Remaja Rosdakarya.
Nakhipova, V., Kerimbekov, Y., Umarova, Z., Suleimenova, L., Botayeva, S., Ibashova, A., & Zhumatayev, N. (2024). Use of the Naive Bayes Classifier Algorithm in Machine Learning for Student Performance Prediction. International Journal of Information and Education Technology, 14(1), 92-98. https://doi.org/10.18178/ijiet.2024.14.1.2028
Nuraeni, F., Agustin, Y. H., Rahayu, S., Kurniadi, D., Septiana, Y., & Lestari, S. M. (2021). Student Study Timeline Prediction Model Using Naïve Bayes Based Forward Selection Feature. In 2021 International Conference on ICT for Smart Society (ICISS) (pp. 1-5). Bandung, Indonesia: Institut Teknologi Bandung.
Pangestu, B. H. (2023). Data Mining Menggunakan Algoritma Naïve Bayes Classifier untuk Evaluasi Kinerja Karyawan. Jurnal Riset Matematika, 3(2), 177-184. https://doi.org/10.29313/jrm.v3i2.2837
Perez, J. G., & Perez, E. S. (2021). Predicting Student Program Completion Using Naïve Bayes Classification Algorithm. International Journal of Modern Education and Computer Science, 12(3), 57-67. https://doi.org/10.5815/ijmecs.2021.03.05
Putra, M., & Harahap, E. (2024). Machine Learning pada Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Random Forest. Jurnal Riset Matematika (JRM), 4(2), 127-136. https://doi.org/10.29313/jrm.v4i2.5102
Rachmawati, A. K., & Miasary, S. D. (2024). Performance Analysis of C5. 0 and Naïve Bayes Classification Algorithm for Pattern Recognition of Student Graduates. In AIP Conference Proceedings (pp. 1-7). Cambridge, United States of America: Harvard University.
Rawal, A., & Lal, B. (2023). Predictive Model for Admission Uncertainty in High Education Using Naïve Bayes Classifier. Journal of Indian Business Research, 15(2), 262-277. https://doi.org/10.1108/JIBR-08-2022-0209
Rolansa, F., Yunita, Y., & Suheri, S. (2020). Sistem Prediksi dan Evaluasi Prestasi Akademik Mahasiswa di Program Studi Teknik Informatika Menggunakan Data Mining. Jurnal Pendidikan Informatika dan Sains, 9(1), 75-85. https://doi.org/10.31571/saintek.v9i1.1696
Sembiring, M. T., & Tambunan, R. H. (2021). Analysis of Graduation Prediction on Time Based on Student Academic Performance Using the Naïve Bayes Algorithm with Data Mining Implementation (Case study: Department of Industrial Engineering USU). IOP Conference Series: Materials Science and Engineering, 1122(1), 12069. https://doi.org/10.1088/1757-899X/1122/1/012069
Viet, T. N., Le Minh, H., Hieu, L. C., & Anh, T. H. (2021). The Naïve Bayes Algorithm for Learning Data Analytics. Indian Journal of Computer Science and Engineering, 12(4), 1038-1043. https://doi.org/10.21817/indjcse/2021/v12i4/211204191
Wijiyanto, W., Pradana, A., & Sopingi, S. (2024). Perbandingan Data untuk Memprediksi Ketepatan Studi Berdasarkan Atribut Keluarga Menggunakan Machine Learning. JIKA (Jurnal of Informatics) Universitas Muhammadiyah Tangerang, 8(2), 221-228. https://doi.org/10.31000/jika.v8i2.10752
Zheng, X., & Li, C. (2024). Predicting Students’ Academic Performance through Machine Learning Classifiers: A Study Employing the Naive Bayes Classifier (NBC). International Journal of Advanced Computer Science and Applications, 15(1), 994-1008. https://doi.org/10.14569/ijacsa.2024.0150199
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Lolyta Damora Simbolon, Rani Farida Sinaga, Lena Rosdiana Pangaribuan, & Sofy Kristiani Manalu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.


