Descriptive Survey Study : Teacher and Student Perception in the Implementation of Deep Learning in Physics Learning

Authors

  • Dasmo Dasmo Mathematics and Natural Sciences Education Study Program, Faculty of Mathematics and Natural Sciences, Indraprasta PGRI University, Nangka Raya Street Number 58 C, South Jakarta, Daerah Khusus Ibukota Jakarta 12530, Indonesia
  • Dulhamin Arif Mathematics and Natural Sciences Education Study Program, Faculty of Mathematics and Natural Sciences, Indraprasta PGRI University, Nangka Raya Street Number 58 C, South Jakarta, Daerah Khusus Ibukota Jakarta 12530, Indonesia
  • Muhamad Sofiandi Mathematics and Natural Sciences Education Study Program, Faculty of Mathematics and Natural Sciences, Indraprasta PGRI University, Nangka Raya Street Number 58 C, South Jakarta, Daerah Khusus Ibukota Jakarta 12530, Indonesia
  • Ani Hoerunisa Mathematics and Natural Sciences Education Study Program, Faculty of Mathematics and Natural Sciences, Indraprasta PGRI University, Nangka Raya Street Number 58 C, South Jakarta, Daerah Khusus Ibukota Jakarta 12530, Indonesia
  • Nurzeini Herdiansyah Mathematics and Natural Sciences Education Study Program, Faculty of Mathematics and Natural Sciences, Indraprasta PGRI University, Nangka Raya Street Number 58 C, South Jakarta, Daerah Khusus Ibukota Jakarta 12530, Indonesia

DOI:

https://doi.org/10.36312/panthera.v6i1.883

Keywords:

Deep Learning Pedagogy, Implementation, Merdeka Curriculum, Student Perceptions, Teacher Perceptions

Abstract

Education in the 21st century demands learning processes that foster deep, meaningful understanding. Within the framework of the Merdeka Curriculum, deep learning is regarded as an essential approach to support students in developing critical thinking, reflective skills, and the ability to connect scientific concepts to real-life contexts. This study aims to describe teachers’ and students’ perceptions of the implementation of deep learning in physics instruction at SMAN 2 Lembang. A descriptive survey design was employed, integrating both qualitative and quantitative data. The data were collected through questionnaires, semi-structured interviews, classroom observations, and instructional documentation. Participants included physics teachers and eleventh-grade students. Data analysis followed the stages of reduction, presentation, and conclusion drawing. The findings reveal that teachers generally possess a solid understanding of deep learning principles, although various challenges persist in its implementation, such as limited instructional time, laboratory constraints, and students’ readiness for reflective and independent learning activities. Most students perceived that deep learning helped them achieve a deeper understanding of physics concepts, even though some still required guidance in exploratory and reflective tasks. Supporting factors included school policies that encourage innovation and teachers’ motivation to improve instructional practices, while inhibiting factors involved uneven learning facilities and differences in student preparedness. Overall, the study indicates that deep learning has the potential to enhance the quality of physics learning. However, its effective implementation requires continuous support through teacher training, improved instructional resources, and adaptive strategies aligned with the school context.

Downloads

Download data is not yet available.

References

Afnida, M., & Suparno, S. (2020). Literasi dalam Pendidikan Anak Usia Dini: Persepsi dan Praktik Guru di Prasekolah Aceh. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 4(2), 971-981. https://doi.org/10.31004/obsesi.v4i2.480

Al Mudawi, N., & Alazeb, A. (2022). A Model for Predicting Cervical Cancer Using Machine Learning Algorithms. Sensors, 22(11), 41-32. https://doi.org/10.3390/s22114132

Aqmar, A. Z. (2020). Persepsi Atas Gaya Kepemimpian Kepala Sekolah dan Tipe Kepribadian terhadap Kinerja Guru. Herodotus: Jurnal Pendidikan IPS, 1(3), 218-227. https://dx.doi.org/10.30998/herodotus.v1i3.5869

Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., & Sekimoto, Y. (2021). RDD2020: An Annotated Image Dataset for Automatic Road Damage Detection Using Deep Learning. Data In Brief, 36, 107-133. https://doi.org/10.1016/j.dib.2021.107133

Asif, A., Mukhtar, H., Alqadheeb, F., Ahmad, H. F., & Alhumam, A. (2022). An Approach for Pronunciation Classification of Classical Arabic Phonemes Using Deep Learning. Applied Sciences, 12(1), 238. https://doi.org/10.3390/app12010238

Azka, R. (2019). Hubungan Motivasi Belajar dan Persepsi Siswa terhadap Gaya Mengajar Guru dengan Prestasi Belajar Matematika. Jurnal Pengembangan Pembelajaran Matematika, 1(1), 23-31. https://doi.org/10.14421/jppm.2019.11.23-31

Bal, M., & Öztürk, E. (2025). The Potential of Deep Learning in Improving K‐12 Students’ Writing Skills: A Systematic Review. British Educational Research Journal, 51(3), 1295-1312. https://doi.org/10.1002/berj.4120

Bangyal, W. H., Qasim, R., ur Rehman, N., Ahmad, Z., Dar, H., Rukhsar, L., Aman, Z., & Ahmad, J. (2021). Detection of Fake News Text Classification on Covid-19 Using Deep Learning Approaches. Computational and Mathematical Methods in Medicine, 2021, 1-14. https://doi.org/10.1155/2021/5514220

Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044

Caballero-Ramirez, D., Baez-Lopez, Y., Limon-Romero, J., Tortorella, G., & Tlapa, D. (2023). An Assessment of Human Inspection and Deep Learning for Defect Identification in Floral Wreaths. Horticulturae, 9(11), 1213. https://doi.org/10.3390/horticulturae9111213

Chun, P., Yamane, T., & Maemura, Y. (2022). A Deep Learning‐Based Image Captioning Method to Automatically Generate Comprehensive Explanations of Bridge Damage. Computer-Aided Civil and Infrastructure Engineering, 37(11), 1387-1401. https://doi.org/10.1111/mice.12793

Darmayanti, H., Yunianto, A., Budisantoso, A. B., Ariyani, A. I., & Nisa, A. F. (2025). Penerapan Deep Learning dalam Kurikulum Nasional di Sekolah Dasar. In Prosiding Seminar Nasional Pendidikan Dasar (pp. 345-360). Yogyakarta, Indonesia: Universitas Sarjanawiyata Tamansiswa.

Dewi, A. R., Maily, M. E. W., & Safitri, F. N. C. (2025). Deep Learning dalam Pembelajaran MI Tinjauan Literatur dalam Meaningful Learning Mindful Learning dan Joyful Learning. Jurnal Kepemimpinan & Pengurusan Sekolah, 10(2), 584-592.

Dewindari, K. F., Sa’diah, A. H., & Maspufah, M. (2025). Strategi Pembelajaran Deep Learning dalam Mengembangkan Rasa Ingin Tahu Siswa SD. JOEBAS: Journal of Education, Behavior, and Social Studies, 1(01), 18-25. https://doi.org/10.65624/joebas.v1i1.93

Forootan, M. M., Larki, I., Zahedi, R., & Ahmadi, A. (2022). Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability, 14(8), 4832. https://doi.org/10.3390/su14084832

Fullan, M., & Langworthy, M. (2014). A Rich Seam: How New Pedagogies Find Deep Learning. London: Pearson.

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery. Molecular Diversity, 25(3), 1315-1360. https://doi.org/10.1007/s11030-021-10217-3

Irawati, R., & Santaria, R. (2020). Persepsi Siswa SMAN 1 Palopo terhadap Pelaksanaan Pembelajaran Daring Mata Pelajaran Kimia. Jurnal Studi Guru dan Pembelajaran, 3(2), 264-270. https://doi.org/10.30605/jsgp.3.2.2020.286

Jakhar, D., & Kaur, I. (2020). Artificial Intelligence, Machine Learning and Deep Learning: Definitions and Differences. Clinical and Experimental Dermatology, 45(1), 131-132. https://doi.org/10.1111/ced.14029

Jaleniauskienė, E., Lisaitė, D., & Daniusevičiūtė-Brazaitė, L. (2023). Artificial Intelligence in Language Education: A Bibliometric Analysis. Sustainable Multilingualism 23(1), 159-194. https://doi.org/10.2478/sm-2023-0017

Jiang, W. (2022). Graph-Based Deep Learning for Communication Networks: A Survey. Computer Communications, 185(C), 40-54. https://doi.org/10.1016/j.comcom.2021.12.015

Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning. Sensors, 21(7), 2514. https://doi.org/10.3390/s21072514

Kaur, G., & Sharma, A. (2023). A Deep Learning-Based Model Using Hybrid Feature Extraction Approach for Consumer Sentiment Analysis. Journal of Big Data, 10(1), 1-23. https://doi.org/10.1186/s40537-022-00680-6

Kumar, Y., Koul, A., & Singh, C. (2023). A Deep Learning Approaches in Text-to-Speech System: A Systematic Review and Recent Research Perspective. Multimedia Tools and Applications, 82(10), 15171-15197. https://doi.org/10.1007/s11042-022-13943-4

Liu, L. (2025). Intelligent Assessment System of Japanese Education Based on Deep Learning. In International Conference on Digital Analysis and Processing, Intelligent Computation (DAPIC) (pp. 507-512). Incheon, South Korea: Digital Analysis and Processing, Intelligent Computation (DAPIC).

Mere, K. (2025). Persepsi Guru dan Siswa terhadap Implementasi Pendekatan Deep Learning dalam Proses Pembelajaran di SMA. Jurnal Kajian Ilmu Pendidikan (JKIP), 6(3), 1346-1352. https://doi.org/10.55583/jkip.v6i3.1632

Mohbey, K. K., Meena, G., Kumar, S., & Lokesh, K. (2024). A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets. New Generation Computing, 42(1), 89-107. https://doi.org/10.1007/s00354-023-00227-0

Nababan, E., Hasibuan, S. H. M., Mika, S., Putri, T. A., Mailani, E., & Rarastika, N. (2025). Penerapan Pendekatan Deep Learning untuk Mendukung Pembelajaran Matematika di Sekolah Dasar. Katalis Pendidikan : Jurnal Ilmu Pendidikan dan Matematika, 2(3), 14-20. https://doi.org/10.62383/katalis.v2i3.1865

Novita, R. R., & Jumadi, J. (2022). Students’ Conceptual Understanding and Self-Directed Learning on Blended Learning. Journal of Education Technology, 6(4), 617-624. https://doi.org/10.23887/jet.v6i4.49229

Panchenko, L., & Samovilova, N. (2020). Secondary Data Analysis in Educational Research: Opportunities for PhD Students. SHS Web of Conferences, 75(04005), 1-7. https://doi.org/10.1051/shsconf/20207504005

Pangaribuan, F. (2020). Persepsi Mahasiswa Calon Guru pada Ulos Sadum sebagai Sumber Belajar Matematika. In Prosiding Webinar Ethnomathematics (pp. 9-16). Medan, Indonesia: Magister Pendidikan Matematika, Pascasarjana, Universitas HKBP Nommensen.

Purnamasari, D. A. I., Satyadi, H., & Rostiana, R. (2020). Gambaran Professional Quality of Life (ProQoL) Guru Anak Berkebutuhan Khusus. Jurnal Muara Ilmu Sosial, Humaniora, dan Seni, 4(2), 315-321. https://doi.org/10.24912/jmishumsen.v4i2.7704.2021

Putnarubun, A., Rengrengulu, W. C., & Suruan, Y. (2022). Peran Guru Pendidikan Agama Kristen dalam Membentuk Karakter Siswa. Eirene Jurnal Ilmiah Teologi, 1(2), 2621-8135. https://doi.org/10.56942/ejit.v7i2.57

Ratu, B., Puswiartika, D., Baan, A. B., & Elfira, N. (2024). Pendampingan Guru BK dalam Melaksanakan Konseling Resolusi Konflik untuk Meningkatkan Solidaritas antar Siswa di Lingkungan Sekolah. Indonesia Berdaya, 5(3), 797-804.

Razi, A., Chen, X., Li, H., Wang, H., Russo, B., Chen, Y., & Yu, H. (2023). Deep Learning Serves Traffic Safety Analysis: A Forward‐Looking Review. IeT Intelligent Transport Systems, 17(1), 22-71. https://doi.org/10.1049/itr2.12257

Rosiyati, D., Erviana, R., Fadilla, A., Sholihah, U., & Musrikah, M. (2025). Pendekatan Deep Learning dalam Kurikulum Merdeka. Al-Irsyad: Journal of Mathematics Education, 4(2), 131-143. https://doi.org/10.58917/ijme.v4i2.270

Sari, A. W., & Arta, D. J. (2025). Implementasi Deep Learning: Suatu Inovasi Pendidikan. Waspada (Jurnal Wawasan Pengembangan Pendidikan), 13(1), 1-6. https://doi.org/10.61689/waspada.v13i1.727

Shiri, F. M., Perumal, T., Mustapha, N., & Mohamed, R. (2023). A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU. Arxiv Preprint, 2305(17473). https://doi.org/10.48550/arxiv.2305.17473

Shlezinger, N., Eldar, Y. C., & Boyd, S. P. (2022). Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization. IEEE Access, 10, 115384-115398. https://doi.org/10.1109/access.2022.3218802

Sholeh, M. B., Kamsan, N., & Aliyah, H. (2023). Persepsi Guru terhadap Implementasi Kurikulum Merdeka di Madrasah. Tafáqquh: Jurnal Penelitian dan Kajian Keislaman, 11(2), 273-287. https://doi.org/10.52431/tafaqquh.v11i2.2245

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics, A Review. Cognitive Robotics, 3, 54-70. https://doi.org/10.1016/j.cogr.2023.04.001

Sukegawa, S., Yoshii, K., Hara, T., Matsuyama, T., Yamashita, K., Nakano, K., Takabatake, K., Kawai, H., Nagatsuka, H., & Furuki, Y. (2021). Multi-Task Deep Learning Model for Classification of Dental Implant Brand and Treatment Stage Using Dental Panoramic Radiograph Images. Biomolecules, 11(6), 815. https://doi.org/10.3390/biom11060815

Takahashi, Y., Sone, K., Noda, K., Yoshida, K., Toyohara, Y., Kato, K., Inoue, F., Kukita, A., Taguchi, A., Nishida, H., Miyamoto, Y., Tanikawa, M., Tsuruga, T., Iriyama, T., Nagasaka, K., Matsumoto, Y., Hirota, Y., Hiraike-Wada, O., Oda, K., Maruyama, M., Osuga, Y., Fujii, T. (2021). Automated System for Diagnosing Endometrial Cancer by Adopting Deep-Learning Technology in Hysteroscopy. PloS ONE, 16(3), e0248526. https://doi.org/10.1371/journal.pone.0248526

Tejaswini, V., Babu, K. S., & Sahoo, B. (2024). Depression Detection from Social Media Text Analysis Using Natural Language Processing Techniques and Hybrid Deep Learning Model. ACM Transactions on Asian and Low- Resource Language Information Processing, 23(1), 1-20. https://doi.org/10.1145/3569580

Tsuneki, M. (2022). Deep Learning Models in Medical Image Analysis. Journal of Oral Biosciences, 64(3), 312-320. https://doi.org/10.1016/j.job.2022.03.003

Vinh-Loc, C., Xuan-Viet, T., Hoang-Viet, T., Hoang-Thao, L., & Hoang-Viet, N. (2023). Deep Learning Based-Approach for Quick Response Code Verification. Applied Intelligence, 53(19), 22700-22714. https://doi.org/10.1007/s10489-023-04712-3

Widianingrum, R. T. F., Asrul, A., & Irianti, M. (2022). Persepsi Guru terhadap Pembelajaran Tatap Muka Terbatas di SD se-Gugus I Salawati Kabupaten Sorong. Jurnal Papeda: Jurnal Publikasi Pendidikan Dasar, 4(1), 62-73. https://doi.org/10.36232/jurnalpendidikandasar.v4i1.1897

Downloads

Published

2026-01-31

How to Cite

Dasmo, D., Arif, D., Sofiandi, M., Hoerunisa, A., & Herdiansyah, N. (2026). Descriptive Survey Study : Teacher and Student Perception in the Implementation of Deep Learning in Physics Learning. Panthera : Jurnal Ilmiah Pendidikan Sains Dan Terapan, 6(1), 536–547. https://doi.org/10.36312/panthera.v6i1.883

Issue

Section

Articles