Pemanfaatan CRISPR-Cas9 pada Antibodi Monoklonal untuk Terapi HIV
DOI:
https://doi.org/10.36312/biocaster.v6i1.843Keywords:
Monoclonal Antibodies, CRISPR-Cas9, HIV, Immunotherapy, Gene Editing, TherapyAbstract
HIV infection remains a global health challenge with high rates of new infections and low levels of viral suppression, especially in middle-income countries. Antiretroviral therapy (ART) has significantly reduced morbidity and mortality, but has not been able to eliminate latent reservoirs so lifelong therapy remains necessary. In the last decade, monoclonal antibodies, particularly broadly neutralizing antibodies (bNAbs), as well as CRISPR-Cas9 gene-editing technology have emerged as innovative therapeutic approaches with long-term remission potential. bNAbs is able to neutralize a broad spectrum of HIV strains and activate immune effector mechanisms, including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, but cost limitations, viral resistance, and duration of effects limit its use as a substitute for ART. In parallel, CRISPR-Cas9 has demonstrated the ability to target HIV proviruses in the host cell genome and enable the engineering of immune cells to stably produce therapeutic antibodies. Pre-clinical studies show that B-cell engineering with CRISPR-Cas9 can maintain immune memory, perform isotype switching, and somatic hypermutation, thus creating "programmed immunity". The combination approach of bNAbs and CRISPR-Cas9 is considered promising because it is able to neutralize circulating viruses while removing latent proviruses, increasing the potential for functional cure. However, biological risks such as off-target effects, Cas9 immunogenicity, limitations of the delivery system, and the emergence of escape mutants remain challenges. This review shows that the integration of monoclonal antibodies with CRISPR-Cas9 opens up a new paradigm of HIV therapy, with the potential to improve efficacy, duration of protection, and decrease reliance on ART. Further research, including advanced phase clinical trials, is needed to ensure its safety, effectiveness, and feasibility of application in human populations.
Downloads
References
Ahumada-Ayala, M., Aguilar-López, R., González-Stoylov, N., Palacio-Sosa, E., Cervantes-Barragán, D. E., & Fernández-Hernández, L. (2023). Editing the Human Genome with CRISPR/Cas: A Review of its Molecular Basis, Current Clinical Applications, and Bioethical Implications. Revista de Investigacion Clinica; Organo del Hospital de Enfermedades de la Nutricion, 75(1), 13-28. https://doi.org/10.24875/RIC.22000252
Alkan, I. B., Gunes, N. B., Ozsavran, M., & Ayyildiz, T. K. (2023). Impact of Personal Hygiene Education Based on Social Learning Theory on Preschool Children. Early Childhood Education Journal, 53(2), 539-550. https://doi.org/10.1007/s10643-023-01603-7
Bekker, L. G., Beyrer, C., Mgodi, N., Lewin, S. R., Delany-Moretlwe, S., Taiwo, B., Masters, M. C., & Lazarus, J. V. (2023). HIV Infection. Nature Reviews : Disease Primers, 9(1), 1-20. https://doi.org/10.1038/s41572-023-00452-3
Benhemma-Le Gall, A., Thompson, P., Merchant, N., & Graham, I. (2023). Vessel Noise Prior to Pile Driving at Offshore Windfarm Sites Deters Harbour Porpoises from Potential Injury Zones. Environmental Impact Assessment Review, 103(1), 1-11. https://doi.org/10.1016/j.eiar.2023.107271
Collins, L, T. (2022). An Injectable CRISPR Therapy Instructs B Cells to Produce Anti-HIV Antibodies. Synthetic Biology, 7(1), 1-2. https://doi.org/10.1093/synbio/ysac027
Feist, W. N., Luna, S. E., Ben-Efraim, K., Interrante, M. V. F., Amorin, A., Johnston, N. M., Bruun, T. U. J., Utz, A., Ghanim, H. Y., Lesch, B. J., McLaughlin, T. M., Dudek, A. M., & Porteus, M. H. (2025). Multilayered HIV-1 Resistance in HSPCs through CCR5 Knockout and B Cell Secretion of HIV-Inhibiting Antibodies. Nature Communications, 16(1), 1-18. https://doi.org/10.1038/s41467-025-58371-8
Glinsek, S., Song, L., Gerard, M., Bouton, O., Girod, S., El Hachemi, M., Mandal, B., Defay, E., Granzow, T., & Polesel, J. (2023). Autonomous Low-Energy Communication Module Based on Inkjet-Printed Transparent Antenna. Cell Reports Physical Science, 4(12), 1-23. https://doi.org/10.1016/j.xcrp.2023.101685
Gulick, R. M., & Flexner, C. (2019). Long-Acting HIV Drugs for Treatment and Prevention. Annual Review of Medicine, 70(1), 137-150. https://doi.org/10.1146/annurev-med-041217-013717
Hartweger, H., McGuire, A. T., Horning, M., Taylor, J., Dosenovic, P., Yost, D., Gazumyan, A., Seaman, M. S., Stamatatos, L., Jankovic, M., & Nussenzweig, M. (2019). HIV-Specific Humoral Immune Responses by CRISPR/Cas9-Edited B Cells. Journal of Experimental Medicine, 216(6), 1301-1310. https://doi.org/10.1084/jem.20190287
Jeddoub, I., Nys, G.-A., Hajji, R., & Billen, R. (2023). Digital Twins for Cities: Analyzing the Gap between Concepts and Current Implementations with a Specific Focus on Data Integration. International Journal of Applied Earth Observation and Geoinformation, 122(1), 1-23. https://doi.org/10.1016/j.jag.2023.103440
Kalkan, H., Panza, E., Pagano, E., Ercolano, G., Moriello, C., Piscitelli, F., Sztretye, M., Capasso, R., Di Marzo, V., & Iannotti, F. A. (2023). Dysfunctional Endocannabinoid CB1 Receptor Expression and Signaling Contribute to Skeletal Muscle Cell Toxicity Induced by Simvastatin. Cell Death & Disease, 14(1), 1-12. https://doi.org/10.1038/s41419-023-06080-9
Kinman, A. W. L., & Pompano, R. R. (2019). Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. Bioconjugate Chemistry, 30(3), 800-807. https://doi.org/10.1021/acs.bioconjchem.8b00912
Liu, Y., Cao, W., Sun, M., & Li, T. (2020). Broadly Neutralizing Antibodies for HIV-1: Efficacies, Challenges and Opportunities. Emerging Microbes & Infections, 9(1), 194-206. https://doi.org/10.1080/22221751.2020.1713707
Mahomed, S., Garrett, N., Baxter, C., Karim, Q. A., & Karim, S. S. A. (2021). Clinical Trials of Broadly Neutralizing Monoclonal Antibodies for Human Immunodeficiency Virus Prevention: A Review. The Journal of Infectious Diseases, 223(3), 370-380. https://doi.org/10.1093/infdis/jiaa377
Miner, M. D., Corey, L., & Montefiori, D. (2021). Broadly Neutralizing Monoclonal Antibodies for HIV Prevention. Journal of the International AIDS Society, 24(1), 59-65. https://doi.org/10.1002/jia2.25829
Moso, M. A., Roche, M., Cevaal, P. M., & Lewin, S. R. (2025). CRISPR/Cas9 for Achieving Postintervention HIV Control. Current Opinion in HIV and AIDS, 20(5), 432-440. https://doi.org/10.1097/COH.0000000000000963
Nahmad, A. D., Raviv, Y., Horovitz-Fried, M., Sofer, I., Akriv, T., Nataf, D., Dotan, I., Carmi, Y., Burstein, D., Wine, Y., Benhar, I., & Barzel, A. (2020). Engineered B Cells Expressing an Anti-HIV Antibody Enable Memory Retention, Isotype Switching and Clonal Expansion. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-020-19649-1
Nel, C., & Frater, J. (2024). Enhancing Broadly Neutralising Antibody Suppression of HIV by Immune Modulation and Vaccination. Frontiers in Immunology, 15(1), 1-18. https://doi.org/10.3389/fimmu.2024.1478703
Paneerselvam, N., Khan, A., & Lawson, B. R. (2023). Broadly Neutralizing Antibodies Targeting HIV: Progress and Challenges. Clinical Immunology, 257(1), 1-44. https://doi.org/10.1016/j.clim.2023.109809
Reeves, D. B., Mayer, B. T., Decamp, A. C., Huang, Y., Zhang, B., Carpp, L. N., Magaret, C. A., Juraska, M., Gilbert, P. B., Montefiori, D. C., Bar, K. J., Cardozo-Ojeda, E. F., Schiffer, J. T., Rossenkhan, R., Edlefsen, P., Morris, L., Mkhize, N. N., Williamson, C., Mullins, J. I., Seaton, K. E., Tomaras, G. D., Andrew, P., Mgodi, N., Ledgerwood, J. E., Cohen, M. S., Corey, L., Naidoo, L., Orrell, C., Goepfert, P. A., Casapia, M., Sobieszczyk, M. E., Karuna, S. T., & Edupuganti, S. (2023). High Monoclonal Neutralization Titers Reduced Breakthrough HIV-1 Viral Loads in the Antibody Mediated Prevention Trials. Nature Communications, 15(1), 1-15. https://doi.org/10.1038/s41467-024-46805-8
Regueiro-Ren, A., Sit, S. Y., Chen, Y., Chen, J., Swidorski, J. J., Liu, Z., Venables, B. L., Sin, N., Hartz, R. A., Protack, T., Lin, Z., Zhang, S., Li, Z., Wu, D. R., Li, P., Kempson, J., Hou, X., Gupta, A., Rampulla, R., Mathur, A., Park, H., Sarjeant, A., Benitex, Y., Rahematpura, S., Parker, D., Phillips, T., Haskell, R., Jenkins, S., Santone, K. S., Cockett, M., Hanumegowda, U., Dicker, I., Meanwell, N. A., & Krystal, M. (2022). The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. Journal of Medicinal Chemistry, 65(18), 11927-11948. https://doi.org/10.1021/acs.jmedchem.2c00879
Sophia, S., Antony, M., Ashan, M. A., Fadhullah, H., & Jannah, R. M. (2023). Metode CRISPR/Cas dan Minimalisasi Off-Target: Review. Agriculture and Biological Technology, 1(1), 17-30. https://doi.org/10.61761/agiotech.1.1.17-30
Thavarajah, J. J., Hønge, B. L., & Wejse, C. M. (2024). The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses, 16(6), 1-22. https://doi.org/10.3390/v16060911
Ueda, N., Cahen, M., Leonard, J., Deleurme, L., Dreano, S., Sirac, C., AnneGaly, Moreaux, J., Danger, Y., & Cogné, M. (2024). Single-Hit Genome Editing Optimized for Maturation in B Cells Redirects Their Specificity Toward Tumor Antigens. Scientific Reports, 14(1), 1-12. https://doi.org/10.1038/s41598-024-74005-3
UNAIDS. (2025). Retrieved October 7, 2025, from UNAIDS. Interactwebsite: https://www.unaids.org/en/resources/presscentre/featurestories/2025/february/20250224_indonesia_fs
Zhang, D., Liu, H., & Zhong, Y. (2025). Monoclonal Antibodies Production in Microbial Systems: Current Status, Challenges and Perspectives. New Biotechnology, 90(1), 163-173. https://doi.org/10.1016/j.nbt.2025.10.005
Zhu, L., Huang, B., Wang, X., Ni, F., Ao, M., Wang, R., Zheng, B., Chen, C., Xue, J., Zhu, L., Yang, C., Shi, L., Geng, S., Hu, J., Yang, M., Zhang, D., Yang, P., Li, M., Li, Y., Hu, Q., Ye, S., Zheng, P., Wei, H., Wu, Z., Zhang, L., Wang, Y., Liu, Y., & Wu, X. (2024). Highly Potent and Broadly Neutralizing Anti-CD4 Trimeric Nanobodies Inhibit HIV-1 Infection by Inducing CD4 Conformational Alteration. Nature Communications, 15(1), 1-18. https://doi.org/10.1038/s41467-024-51414-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ryan Putra Adhytama S & Yusminah Hala

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

