Pemanfaatan CRISPR-Cas9 pada Antibodi Monoklonal untuk Terapi HIV

Authors

  • Ryan Putra Adhytama S Program Studi Pendidikan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Makassar, Jalan Mallengkeri Raya, Makassar, Sulawesi Selatan 90224, Indonesia
  • Yusminah Hala Program Studi Pendidikan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Makassar, Jalan Mallengkeri Raya, Makassar, Sulawesi Selatan 90224, Indonesia

DOI:

https://doi.org/10.36312/biocaster.v6i1.843

Keywords:

Monoclonal Antibodies, CRISPR-Cas9, HIV, Immunotherapy, Gene Editing, Therapy

Abstract

HIV infection remains a global health challenge with high rates of new infections and low levels of viral suppression, especially in middle-income countries. Antiretroviral therapy (ART) has significantly reduced morbidity and mortality, but has not been able to eliminate latent reservoirs so lifelong therapy remains necessary. In the last decade, monoclonal antibodies, particularly broadly neutralizing antibodies (bNAbs), as well as CRISPR-Cas9 gene-editing technology have emerged as innovative therapeutic approaches with long-term remission potential. bNAbs is able to neutralize a broad spectrum of HIV strains and activate immune effector mechanisms, including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, but cost limitations, viral resistance, and duration of effects limit its use as a substitute for ART. In parallel, CRISPR-Cas9 has demonstrated the ability to target HIV proviruses in the host cell genome and enable the engineering of immune cells to stably produce therapeutic antibodies. Pre-clinical studies show that B-cell engineering with CRISPR-Cas9 can maintain immune memory, perform isotype switching, and somatic hypermutation, thus creating "programmed immunity". The combination approach of bNAbs and CRISPR-Cas9 is considered promising because it is able to neutralize circulating viruses while removing latent proviruses, increasing the potential for functional cure. However, biological risks such as off-target effects, Cas9 immunogenicity, limitations of the delivery system, and the emergence of escape mutants remain challenges. This review shows that the integration of monoclonal antibodies with CRISPR-Cas9 opens up a new paradigm of HIV therapy, with the potential to improve efficacy, duration of protection, and decrease reliance on ART. Further research, including advanced phase clinical trials, is needed to ensure its safety, effectiveness, and feasibility of application in human populations.

Downloads

Download data is not yet available.

References

Ahumada-Ayala, M., Aguilar-López, R., González-Stoylov, N., Palacio-Sosa, E., Cervantes-Barragán, D. E., & Fernández-Hernández, L. (2023). Editing the Human Genome with CRISPR/Cas: A Review of its Molecular Basis, Current Clinical Applications, and Bioethical Implications. Revista de Investigacion Clinica; Organo del Hospital de Enfermedades de la Nutricion, 75(1), 13-28. https://doi.org/10.24875/RIC.22000252

Alkan, I. B., Gunes, N. B., Ozsavran, M., & Ayyildiz, T. K. (2023). Impact of Personal Hygiene Education Based on Social Learning Theory on Preschool Children. Early Childhood Education Journal, 53(2), 539-550. https://doi.org/10.1007/s10643-023-01603-7

Bekker, L. G., Beyrer, C., Mgodi, N., Lewin, S. R., Delany-Moretlwe, S., Taiwo, B., Masters, M. C., & Lazarus, J. V. (2023). HIV Infection. Nature Reviews : Disease Primers, 9(1), 1-20. https://doi.org/10.1038/s41572-023-00452-3

Benhemma-Le Gall, A., Thompson, P., Merchant, N., & Graham, I. (2023). Vessel Noise Prior to Pile Driving at Offshore Windfarm Sites Deters Harbour Porpoises from Potential Injury Zones. Environmental Impact Assessment Review, 103(1), 1-11. https://doi.org/10.1016/j.eiar.2023.107271

Collins, L, T. (2022). An Injectable CRISPR Therapy Instructs B Cells to Produce Anti-HIV Antibodies. Synthetic Biology, 7(1), 1-2. https://doi.org/10.1093/synbio/ysac027

Feist, W. N., Luna, S. E., Ben-Efraim, K., Interrante, M. V. F., Amorin, A., Johnston, N. M., Bruun, T. U. J., Utz, A., Ghanim, H. Y., Lesch, B. J., McLaughlin, T. M., Dudek, A. M., & Porteus, M. H. (2025). Multilayered HIV-1 Resistance in HSPCs through CCR5 Knockout and B Cell Secretion of HIV-Inhibiting Antibodies. Nature Communications, 16(1), 1-18. https://doi.org/10.1038/s41467-025-58371-8

Glinsek, S., Song, L., Gerard, M., Bouton, O., Girod, S., El Hachemi, M., Mandal, B., Defay, E., Granzow, T., & Polesel, J. (2023). Autonomous Low-Energy Communication Module Based on Inkjet-Printed Transparent Antenna. Cell Reports Physical Science, 4(12), 1-23. https://doi.org/10.1016/j.xcrp.2023.101685

Gulick, R. M., & Flexner, C. (2019). Long-Acting HIV Drugs for Treatment and Prevention. Annual Review of Medicine, 70(1), 137-150. https://doi.org/10.1146/annurev-med-041217-013717

Hartweger, H., McGuire, A. T., Horning, M., Taylor, J., Dosenovic, P., Yost, D., Gazumyan, A., Seaman, M. S., Stamatatos, L., Jankovic, M., & Nussenzweig, M. (2019). HIV-Specific Humoral Immune Responses by CRISPR/Cas9-Edited B Cells. Journal of Experimental Medicine, 216(6), 1301-1310. https://doi.org/10.1084/jem.20190287

Jeddoub, I., Nys, G.-A., Hajji, R., & Billen, R. (2023). Digital Twins for Cities: Analyzing the Gap between Concepts and Current Implementations with a Specific Focus on Data Integration. International Journal of Applied Earth Observation and Geoinformation, 122(1), 1-23. https://doi.org/10.1016/j.jag.2023.103440

Kalkan, H., Panza, E., Pagano, E., Ercolano, G., Moriello, C., Piscitelli, F., Sztretye, M., Capasso, R., Di Marzo, V., & Iannotti, F. A. (2023). Dysfunctional Endocannabinoid CB1 Receptor Expression and Signaling Contribute to Skeletal Muscle Cell Toxicity Induced by Simvastatin. Cell Death & Disease, 14(1), 1-12. https://doi.org/10.1038/s41419-023-06080-9

Kinman, A. W. L., & Pompano, R. R. (2019). Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. Bioconjugate Chemistry, 30(3), 800-807. https://doi.org/10.1021/acs.bioconjchem.8b00912

Liu, Y., Cao, W., Sun, M., & Li, T. (2020). Broadly Neutralizing Antibodies for HIV-1: Efficacies, Challenges and Opportunities. Emerging Microbes & Infections, 9(1), 194-206. https://doi.org/10.1080/22221751.2020.1713707

Mahomed, S., Garrett, N., Baxter, C., Karim, Q. A., & Karim, S. S. A. (2021). Clinical Trials of Broadly Neutralizing Monoclonal Antibodies for Human Immunodeficiency Virus Prevention: A Review. The Journal of Infectious Diseases, 223(3), 370-380. https://doi.org/10.1093/infdis/jiaa377

Miner, M. D., Corey, L., & Montefiori, D. (2021). Broadly Neutralizing Monoclonal Antibodies for HIV Prevention. Journal of the International AIDS Society, 24(1), 59-65. https://doi.org/10.1002/jia2.25829

Moso, M. A., Roche, M., Cevaal, P. M., & Lewin, S. R. (2025). CRISPR/Cas9 for Achieving Postintervention HIV Control. Current Opinion in HIV and AIDS, 20(5), 432-440. https://doi.org/10.1097/COH.0000000000000963

Nahmad, A. D., Raviv, Y., Horovitz-Fried, M., Sofer, I., Akriv, T., Nataf, D., Dotan, I., Carmi, Y., Burstein, D., Wine, Y., Benhar, I., & Barzel, A. (2020). Engineered B Cells Expressing an Anti-HIV Antibody Enable Memory Retention, Isotype Switching and Clonal Expansion. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-020-19649-1

Nel, C., & Frater, J. (2024). Enhancing Broadly Neutralising Antibody Suppression of HIV by Immune Modulation and Vaccination. Frontiers in Immunology, 15(1), 1-18. https://doi.org/10.3389/fimmu.2024.1478703

Paneerselvam, N., Khan, A., & Lawson, B. R. (2023). Broadly Neutralizing Antibodies Targeting HIV: Progress and Challenges. Clinical Immunology, 257(1), 1-44. https://doi.org/10.1016/j.clim.2023.109809

Reeves, D. B., Mayer, B. T., Decamp, A. C., Huang, Y., Zhang, B., Carpp, L. N., Magaret, C. A., Juraska, M., Gilbert, P. B., Montefiori, D. C., Bar, K. J., Cardozo-Ojeda, E. F., Schiffer, J. T., Rossenkhan, R., Edlefsen, P., Morris, L., Mkhize, N. N., Williamson, C., Mullins, J. I., Seaton, K. E., Tomaras, G. D., Andrew, P., Mgodi, N., Ledgerwood, J. E., Cohen, M. S., Corey, L., Naidoo, L., Orrell, C., Goepfert, P. A., Casapia, M., Sobieszczyk, M. E., Karuna, S. T., & Edupuganti, S. (2023). High Monoclonal Neutralization Titers Reduced Breakthrough HIV-1 Viral Loads in the Antibody Mediated Prevention Trials. Nature Communications, 15(1), 1-15. https://doi.org/10.1038/s41467-024-46805-8

Regueiro-Ren, A., Sit, S. Y., Chen, Y., Chen, J., Swidorski, J. J., Liu, Z., Venables, B. L., Sin, N., Hartz, R. A., Protack, T., Lin, Z., Zhang, S., Li, Z., Wu, D. R., Li, P., Kempson, J., Hou, X., Gupta, A., Rampulla, R., Mathur, A., Park, H., Sarjeant, A., Benitex, Y., Rahematpura, S., Parker, D., Phillips, T., Haskell, R., Jenkins, S., Santone, K. S., Cockett, M., Hanumegowda, U., Dicker, I., Meanwell, N. A., & Krystal, M. (2022). The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. Journal of Medicinal Chemistry, 65(18), 11927-11948. https://doi.org/10.1021/acs.jmedchem.2c00879

Sophia, S., Antony, M., Ashan, M. A., Fadhullah, H., & Jannah, R. M. (2023). Metode CRISPR/Cas dan Minimalisasi Off-Target: Review. Agriculture and Biological Technology, 1(1), 17-30. https://doi.org/10.61761/agiotech.1.1.17-30

Thavarajah, J. J., Hønge, B. L., & Wejse, C. M. (2024). The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses, 16(6), 1-22. https://doi.org/10.3390/v16060911

Ueda, N., Cahen, M., Leonard, J., Deleurme, L., Dreano, S., Sirac, C., AnneGaly, Moreaux, J., Danger, Y., & Cogné, M. (2024). Single-Hit Genome Editing Optimized for Maturation in B Cells Redirects Their Specificity Toward Tumor Antigens. Scientific Reports, 14(1), 1-12. https://doi.org/10.1038/s41598-024-74005-3

UNAIDS. (2025). Retrieved October 7, 2025, from UNAIDS. Interactwebsite: https://www.unaids.org/en/resources/presscentre/featurestories/2025/february/20250224_indonesia_fs

Zhang, D., Liu, H., & Zhong, Y. (2025). Monoclonal Antibodies Production in Microbial Systems: Current Status, Challenges and Perspectives. New Biotechnology, 90(1), 163-173. https://doi.org/10.1016/j.nbt.2025.10.005

Zhu, L., Huang, B., Wang, X., Ni, F., Ao, M., Wang, R., Zheng, B., Chen, C., Xue, J., Zhu, L., Yang, C., Shi, L., Geng, S., Hu, J., Yang, M., Zhang, D., Yang, P., Li, M., Li, Y., Hu, Q., Ye, S., Zheng, P., Wei, H., Wu, Z., Zhang, L., Wang, Y., Liu, Y., & Wu, X. (2024). Highly Potent and Broadly Neutralizing Anti-CD4 Trimeric Nanobodies Inhibit HIV-1 Infection by Inducing CD4 Conformational Alteration. Nature Communications, 15(1), 1-18. https://doi.org/10.1038/s41467-024-51414-6

Downloads

Published

2026-01-02

How to Cite

Adhytama S, R. P., & Hala, Y. (2026). Pemanfaatan CRISPR-Cas9 pada Antibodi Monoklonal untuk Terapi HIV. Biocaster : Jurnal Kajian Biologi, 6(1), 84–103. https://doi.org/10.36312/biocaster.v6i1.843