Teknologi Pengeditan Gen pada Anemia Sel Sabit (Sickle Cell Disease) : CRISPR-Cas9, Base Editing, dan Prime Editing

Authors

  • Nurul Fadhilah Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Makassar, Jalan Sultan Alauddin Nomor 259, Makassar, Sulawesi Selatan 90221, Indonesia
  • Hartati Hartati Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Makassar, Jalan Daeng Tata Raya, Makassar, Sulawesi Selatan 90224, Indonesia

DOI:

https://doi.org/10.36312/biocaster.v6i1.861

Keywords:

Sickle Cell Anemia, Base Editing, CRISPR-Cas9, Prime Editing, Gene Therapy

Abstract

Sickle Cell Disease (SCD) is a monogenic disease due to a point mutation in the HBB gene that causes chronic hemolytic anemia and vaso-occlusive crisis, while conventional therapy is generally palliative. In the past decade, CRISPR-based gene editing has developed rapidly and given birth to three main platforms, namely CRISPR-Cas9, base editing, and prime editing which opens up opportunities for more curative therapies through fetal hemoglobin (HbF) reactivation or correction of genetic targets. This literature review aims to compare working principles, cutting-edge achievements, advantages, and limitations, as well as the ethical implications and potential integration of biology learning from the three technologies. The method used is a descriptive-comparative literature review of 2015-2025 publications from reputable databases (PubMed, Scopus, ScienceDirect, SpringerLink, and Nature Portfolio) which is selected based on relevance and quality. The results of the synthesis showed that CRISPR-Cas9 has reached the clinical stage through HbF-enhanced autotemcel (exa-cel/Casgevy) exagamglogen therapy and is reported to suppress vasoocclusive crises in most patients. Base editing offers base change without Double-Strand Break (DSB) and shows promising preclinical results, including HbS conversion strategies into antisickling variants (e.g. HbG-Makassar) as well as modulation of HbF regulators. Prime editing provides the ability to "rewrite" sequences without DSBs or separate DNA donors and shows preclinical evidence in hematopoietic stem cells and animal models, but efficiency, complexity of delivery, and long-term safety data remain challenges. This study emphasizes that strengthening ethical governance (safety, informed consent, and access fairness) needs to go hand in hand with innovation. In addition to biomedical relevance, the topic of SCD-gene editing has the potential to be an authentic context for developing students' genomic literacy, ethical reasoning, and critical thinking through the PjBL and SSI approaches.

Downloads

Download data is not yet available.

References

Aljabali, A. A., El-Tanani, M., & Tambuwala, M. M. (2024). Principles of CRISPR-Cas9 Technology: Advancements in Genome Editing and Emerging Trends in Drug Delivery. Journal of Drug Delivery Science and Technology, 92(1), 1-13. https://doi.org/10.1016/j.jddst.2024.105338

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature, 576(1), 149-157. https://doi.org/10.1038/s41586-019-1711-4

Belland, B. R., Kim, C., & Hannafin, M. J. (2017). A Framework for Designing Scaffolds that Improve Motivation and Cognition. Educational Psychologist, 52(4), 246-270. https://doi.org/10.1080/00461520.2017.1309975

Butt, H., Sathish, S., London, E., Johnson, T. L., Essawi, K., Leonard, A., Tislade, J. F., & Demirci, S. (2025). Genome Editing Strategies for Targeted Correction of β-Globin Mutation in Sickle Cell Disease: From Bench to Bedside. Molecular Therapy, 33(5), 2154-2171. https://doi.org/10.1016/j.ymthe.2025.03.047

Chen, L., Zhang, S., Xue, N., Hong, M., Zhang, X., Zhang, D., Yang, J., Bai, S., Huang, Y., Meng, H., Wu, H., Luan, C., Zhu, B., Ru, G., Gao, H., Zhong, L., Liu, M., Cheng, Y., Yi, C., Wang, L., Zao, Y., & Li, D. (2023). Engineering a Precise Adenine Base Editor with Minimal Bystander Editing. Nature Chemical Biology, 19(1), 101-110. https://doi.org/10.1038/s41589-022-01163-8

Chen, P. J., Hussmann, J. A., Yan, J., Knipping, F., Ravisankar, P., Chen, P. F., Chen, C., Nelson, J. W., Newby, G. A., Sahin, M., Osborn, M. J., Weissman, J. S., Adamson, B., & Liu, D. R. (2021). Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes. Cell, 184(22), 5635-5652. https://doi.org/10.1016/j.cell.2021.09.018

Chen, P. J., & Liu, D. R. (2023). Prime Editing for Precise and Highly Versatile Genome Manipulation. Nature Reviews Genetics, 24(3), 161-177. https://doi.org/10.1038/s41576-022-00541-1

Das, S. S. (2024). Prime Editing and its Application in Beta-Hemoglobinopathies. The Nucleus, 67(1), 227-235. https://doi.org/10.1007/s13237-024-00470-w

De Bragança, S., Dillingham, M. S., & Moreno-Herrero, F. (2023). Recent Insights into Eukaryotic Double-Strand DNA Break Repair Unveiled by Single-Molecule Methods. Trends in Genetics, 39(12), 924-940. https://doi.org/10.1016/j.tig.2023.09.004

Demirci, S., Zeng, J., Palchaudhuri, R., Wu, C., Abraham, D. M., Hayal, T. B., Essawi, K., Nguyen, M. A., Stasula, U., Chu, R., Leonard, A., Porter, S., Khan, M. B. N., Hinojosa, G., Uchida, N., Hong, S., Lazzarotto, C. R., Neri, N. R., Silva, L. F. D., Pellin, D., Verma, A., Lanieri, L., Bhat, A., Hammond, K., Tale, T., Maitland, S. A., Sheikhsaran, F., Bonifacino, A. C., Krouse, A. E., Linde, N. S., Engels, T., Golomb, J., Tsai, S. Q., Pruett-Miller, S. M., Scadden, D. T., Dunbar, C. E., Wolfe, S. A., Donahue, R. E., Oslon, L. M., Bauer, D. E., & Tisdale, J. F. (2025). BCL11A+ 58/+ 55 Enhancer-Editing Facilitates HSPC Engraftment and HbF Induction in Rhesus Macaques Conditioned with a CD45 Antibody-Drug Conjugate. Cell Stem Cell, 32(2), 209-226. https://doi.org/10.1016/j.stem.2024.10.014

Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E., Panel-Dinu, M., Saxena, N., Wilkens, A, B., Mantri, S., Uchida, N., Hendel, A., Narla, A., Majeti, R., Weinberg, K, I., & Porteus, M. H. (2016). CRISPR/Cas9 β-Globin Gene Targeting in Human Haematopoietic Stem Cells. Nature, 539(1), 384-389. https://doi.org/10.1038/nature20134

Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J., & Liu, D. R. (2022). Designing and Executing Prime Editing Experiments in Mammalian Cells. Nature Protocols, 17(11), 2431-2468. https://doi.org/10.1038/s41596-022-00724-4

Doudna, J. A. (2020). The Promise and Challenge of Therapeutic Genome Editing. Nature, 578(1), 229-236. https://doi.org/10.1038/s41586-020-1978-5

European Commission. (2024). European Commission Approves First CRISPR/Cas9 Gene-Edited Therapy, CASGEVY (Exagamglogene Autotemcel), for the Treatment of Sickle Cell Disease and Transfusion-Dependent Beta Thalassemia. London: Business Wire.

Everette, K. A., Newby, G. A., Levine, R. M., Mayberry, K., Jang, Y., Mayuranathan, T., Nimmagadda, N., Dempsey, E., Li, Y., Bhoopalan, S. V., Liu, X., Davis, J. R., Nelsom, A. T., Chen, P. J., Sousa, A. A., Cheng, Y., Tisdale, J. F., Weiss, M. J., Yen, J. S., & Liu, D. R. (2023). Ex Vivo Prime Editing of Patient Haematopoietic Stem Cells Rescues Sickle-Cell Disease Phenotypes After Engraftment in Mice. Nature Biomedical Engineering, 7(5), 616-628. https://doi.org/10.1038/s41551-023-01026-0

Fiumara, M., Ferrari, S., Omer-Javed, A., Beretta, S., Albano, L., Canarutto, D., Varesi, A., Gaddoni, C., Brombin, C., Cugnata, F., Zonari, E., Naldini, M. M., Barcell, M., Gentner, B., Merelli, I., & Naldini, L. (2024). Genotoxic Effects of Base and Prime Editing in Human Hematopoietic Stem Cells. Nature Biotechnology, 42(6), 877-891. https://doi.org/10.1038/s41587-023-01915-4

Food and Drug Administration. (2023). FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease, Including the First CRISPR-Based Therapy. Maryland: Food and Drug Administration.

Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., Foel, J., Fuente, J. D. L., Grupp, S., Hardgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A., Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., Montalembert, M. D., Rondelli, D., Sharma, A., Sheth, S., Soni, S., Steinberg, M., Wall, D., Yen, A., & Corbacioglu, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. New England Journal of Medicine, 384(3), 252-260. https://doi.org/10.1056/NEJMoa2031054

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2019). A Review of Project-Based Learning in Higher Education: Student Outcomes and Assessment Methods. Teaching in Higher Education, 25(8), 921-945. https://doi.org/10.1080/13562517.2019.1642128

Gvozdenovic, A., & Corn, J. E. (2023). Fueling Next-Generation Genome Editing with DNA Repair. Current Opinion in Biomedical Engineering, 28(1), 1-9. https://doi.org/10.1016/j.cobme.2023.100506

Handgretinger, R., & Mezger, M. (2024). An Evaluation of Exagamglogene Autotemcel for the Treatment of Sickle Cell Disease and Transfusion-Dependent β-Thalassaemia. Expert Opinion on Biological Therapy, 24(9), 883-888. https://doi.org/10.1080/14712598.2024.2399134

Jeong, Y. K., Lee, S., Hwang, G. H., Hong, S. A., Park, S. E., Kim, J. S., Woo, J., & Bae, S. (2021). Adenine Base Editor Engineering Reduces Editing of Bystander Cytosines. Nature Biotechnology, 39(11), 1426-1433. https://doi.org/10.1038/s41587-021-00943-2

Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46(1), 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822

Jimenez, P. C., Alred, A. R., & Dauer, J. M. (2024). Describing Undergraduate Students’ Reasoning and Use of Evidence During Argumentation about Socioscientific Issues Systems. Frontiers in Education, 9(1), 1-11. https://doi.org/10.3389/feduc.2024.1371095

Kato, G. J., Piel, F. B., Reid, C. D., Gaston, M. H., Ohene-Frempong, K., Krishnamurti, L., Smith, W. R., Panepinto, J. A., Weatherall, D. J., Costa, F. F., & Vichinsky, E. P. (2018). Sickle Cell Disease. Nature Reviews Disease Primers, 4(1), 1-20. https://doi.org/10.1038/nrdp.2018.10

Khatami, F., Aghaii, M., & Aghamir, S. M. K. (2020). Prime Editing: The State-of-the-Art of Genome Editing. Meta Gene, 24(1), 1-11. https://doi.org/10.1016/j.mgene.2020.100661

Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas Guides the Future of Genetic Engineering. Science, 361(1), 866-869. https://doi.org/10.1126/science.aat5011

Kostamo, Z., Darazim, J., Hernandez, B., Pendergast, A., Zgodny, J., Evans, E. N., Zhang, Y., Patel, A. P., Kanne, C. K., Buda, E., Jenkins, R., Haupt, D., Winton, V., Yan, B., Hartigan, A., Chu, H., Ciaramella, G., & Sheehan, V. A. (2023). Evaluation of the Impact of a Naturally Occurring Beta Hemoglobin Variant, Hb G-Makassar, on Mature Red Blood Cell Function and Pathology in a Sickle Cell Disease Mouse Model. Blood, 142(1) 2251-2253. https://doi.org/10.1182/blood-2023-186237

Kostamo, Z., Ortega, M. A., Xu, C., Feliciano, P. R., Budak, E., Lam, D., Winton, V., Jenkins, R., Venugopal, A., Zhang, M., Jamieson, J., Coisman, B., Goldsborough, K., Hernandez, B., Kanne, C. K., Evans, E. N., Zgodny, J., Zhang, Y., Darazim, J., Patel, A., Pendergast, M. A., Manis, J., Hartigan, A. J., Ciaramella, G., Lee, S.-J., Chu, S. H., & Sheehan, V. A. (2025). Base Editing HbS to HbG-Makassar Improves Hemoglobin Function Supporting its Use in Sickle Cell Disease. Nature Communications, 16(1), 1-15. https://doi.org/10.1038/s41467-025-56578-3

Kumari, N., Kaur, E., Raghavan, S. C., & Sengupta, S. (2025). Regulation of Pathway Choice in DNA Repair After Double-Strand Breaks. Current Opinion in Pharmacology, 80(1), 1-20. https://doi.org/10.1016/j.coph.2024.102496

Li, C., Anderson, A. K., Ruminski, P., Rettig, M., Karpova, D., Kiem, H. P., Dipersio, J. F., & Lieber, A. (2024). A Simplified G-CSF-Free Procedure Allows for In Vivo HSC Gene Therapy of Sickle Cell Disease in a Mouse Model. Blood Advances, 8(15), 4089-4101. https://doi.org/10.1182/bloodadvances.2024012757

Li, C., Georgakopoulou, A., Newby, G. A., Chen, P. J., Everette, K. A., Paschoudi, K., Vlachaki, E., Gil, S., Anderson, A. K., Koob, T., Huang, L., Wang, H., Kiem, H., Liu, D. R., Yannaki, E., & Lieber, A. (2023). In Vivo HSC Prime Editing Rescues Sickle Cell Disease in a Mouse Model. Blood : The Journal of the American Society of Hematology, 141(17), 2085-2099. https://doi.org/10.1182/blood.2022018252

Li, C., Georgakopoulou, A., Paschoudi, K., Anderson, A. K., Huang, L., Gil, S., Giannaki, M., Vlachaki, E., Newby, G. A., Liu, D. R., Yannaki, E., Kiem, H. P., & Lieber, A. (2024). Introducing a Hemoglobin G-Makassar Variant in HSCs by In Vivo Base Editing Treats Sickle Cell Disease in Mice. Molecular Therapy, 32(12), 4353-4371. https://doi.org/10.1016/j.ymthe.2024.10.018

Liao, H., Wu, J., VanDusen, N. J., Li, Y., & Zheng, Y. (2024). CRISPR-Cas9-Mediated Homology-Directed Repair for Precise Gene Editing. Molecular Therapy Nucleic Acids, 35(4), 1-20. https://doi.org/10.1016/j.omtn.2024.102344

Marks, R. M., Scott, O., Ivakine, E. A., & Cohn, R. D. (2024). An Optimized Toolkit for Prime Editing. Nature Biotechnology, 42(2), 187-189. https://doi.org/10.1038/s41587-023-02091-1

Matsoukas, I. G. (2020). Prime Editing: Genome Editing for Rare Genetic Diseases without Double-Strand Breaks or Donor DNA. Frontiers in Genetics, 11(1), 1-6. https://doi.org/10.3389/fgene.2020.00528

Meisel, R. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England Journal of Medicine, 384(23), 1-20. https://doi.org/10.1056/NEJMc2103481

Newby, G. A., & Liu, D. R. (2021). In Vivo Somatic Cell Base Editing and Prime Editing. Molecular Therapy, 29(11), 3107-3124. https://doi.org/10.1016/j.ymthe.2021.08.012

Newby, G. A., Yen, J. S., Woodard, K. J., Mayuranathan, T., Lazzarotto, C. R., Li, Y., Sheppard-Tillman, H., P, S. N., Yao, Y., Mayberry, K., Everette, K. A., Jang, Y., Podracky, C. J., Thaman, E., Lechauve, C., Sharma, A., Henderson, J. M., Richter, M. G. F., Zhao, K. T., Miller, S. M., Wang, T., Koblan, L. W., McCaffrey, A. P., Tislade, J. F., & Liu, D. R. (2021). Base Editing of Haematopoietic Stem Cells Rescues Sickle Cell Disease in Mice. Nature, 595(1), 295-302. https://doi.org/10.1038/s41586-021-03609-w

Rao, X., Zhao, H., Shao, C., & Yi, C. (2023). Characterizing off-Target Effects of Genome Editors. Current Opinion in Biomedical Engineering, 28(1), 1-20. https://doi.org/10.1016/j.cobme.2023.100480

Slaymaker, I. M., & Gaudelli, N. M. (2021). Engineering Cas9 for Human Genome Editing. Current Opinion in Structural Biology, 69(1), 86-98. https://doi.org/10.1016/j.sbi.2021.03.004

Tan, J., Forner, J., Karcher, D., & Bock, R. (2022). DNA Base Editing in Nuclear and Organellar Genomes. Trends in Genetics, 38(11), 1147-1169. https://doi.org/10.1016/j.tig.2022.06.015

Thomson, A. M., Piel, F. B., Weatherall, D. J., & Williams, T. N. (2023). Global Epidemiology of Sickle Cell Disease: New Estimates from the Global Burden of Disease 2021 Study. The Lancet Haematology, 10(10), 740-751. https://doi.org/10.1016/S2352-3026(23)00206-3

Wolyniak, M. J. (2025). CRISPR for Introductory-Level Undergraduate Courses. In Wolyniak, M. J., Pattison, D. L., Pieczynski, J. N., Santisteban, M. S. (Eds) Introduction to CRISPR-Cas9 Techniques. Learning Materials in Biosciences (pp. 51-69). Cham: Springer Nature.

Yao, J., & Shayakhmetov, D. M. (2024). Improving Efficacy of In Vivo Therapy of Sickle Cell Disease by Hijacking Natural Biology of Hematopoietic Stem Cells. Molecular Therapy, 32(12), 4167-4169. https://doi.org/10.1016/j.ymthe.2024.11.007

Yuan, B., Zhang, S., Song, L., Chen, J., Cao, J., Qiu, J., Qiu, Z., Chen J., Zhao, X. M., & Cheng, T. L. (2023). Engineering of Cytosine Base Editors with DNA Damage Minimization and Editing Scope Diversification. Nucleic Acids Research, 51(20), 1-14. https://doi.org/10.1093/nar/gkad855

Zarghamian, P., Klermund, J., & Cathomen, T. (2023). Clinical Genome Editing to Treat Sickle Cell Disease-A Brief Update. Frontiers in Medicine, 9(1), 1-10. https://doi.org/10.3389/fmed.2022.1065377

Zeidler, D. L., Herman, B. C., Sadler, T. D., & Newton, M. H. (2019). New Directions in Socio-Scientific Issues Research. Disciplinary and Interdisciplinary Science Education Research, 1(11), 1-9. https://doi.org/10.1186/s43031-019-0008-7

Zeng, H., Daniel, T. C., Lingineni, A., Chee, K., Talloo, K., & Gao, X. (2024). Recent Advances in Prime Editing Technologies and Their Promises for Therapeutic Applications. Current Opinion in Biotechnology, 86(1), 1-20. https://doi.org/10.1016/j.copbio.2024.103071

Zhang, C., Xu, J., Wu, Y., Xu, C., & Xu, P. (2024). Base Editors-Mediated Gene Therapy in Hematopoietic Stem Cells for Hematologic Diseases. Stem Cell Reviews and Reports, 20(6), 1387-1405. https://doi.org/10.1007/s12015-024-10715-5

Zhao, Z., Shang, P., Mohanraju, P., & Geijsen, N. (2023). Prime Editing: Advances and Therapeutic Applications. Trends in Biotechnology, 41(8), 1000-1012. https://doi.org/10.1016/j.tibtech.2023.03.004

Downloads

Published

2026-01-03

How to Cite

Fadhilah, N., & Hartati, H. (2026). Teknologi Pengeditan Gen pada Anemia Sel Sabit (Sickle Cell Disease) : CRISPR-Cas9, Base Editing, dan Prime Editing. Biocaster : Jurnal Kajian Biologi, 6(1), 128–146. https://doi.org/10.36312/biocaster.v6i1.861