Pengaruh Penambahan Asam Oleat terhadap Karakteristik Nanopartikel Magnetit dengan Metode Kopresipitasi
DOI:
https://doi.org/10.36312/panthera.v6i1.1043Keywords:
Oleic Acid, Fe3O4, Coprecipitation, NanoparticlesAbstract
This study discusses the use of natural iron sand in the manufacture of magnetite nanoparticles with oleic acid. The purpose of the study is to produce nano-sized magnetite as an alternative photocatalyst material. Magnetite nanoparticles were synthesized with variations of oleic acid (0.75 ml, 1.5 ml, 2.25 ml, 3 ml) and the addition of 7.5 ml of diethylamine. Synthesis was carried out using XRF to determine the elements contained in the iron sand, SEM to determine the surface morphology, and UV-Vis to determine the size of the bandgap. The results showed that increasing the oleic acid content significantly increased agglomeration due to the large number of particles that merged with each other, while increasing the bandgap value. The results showed that the addition of oleic acid had an effect on the iron sand. The highest XRF test of 88.234% was obtained in the iron sand sample before processing, the lowest SEM test was 0.9 μm, and the highest UV-Vis test was 2.644 eV indicating an increase in the bandgap energy value due to the role of oleic acid as a surfactant. The novelty of this research lies in the use of natural iron sand combined with a fixed proportion of oleic acid (up to 3 ml) and diethylamine (7.5 ml). A good bandgap for the photocatalyst is 2.638 eV which is influenced by the addition of oleic acid as a surfactant. These magnetite nanoparticles show optimal potential and characteristics as photocatalyst materials.
Downloads
References
Arévalo, P., Isasi, J., Caballero, A. J., Marco, J. F., & Martin-Hernandez, F. (2017). Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceramics International, 43(13), 1-13. https://doi.org/10.1016/j.ceramint.2017.05.064
Lenni, N., Lubis, R. Y., & Masthura, M. (2025). Material Nanopartikel Fotokatalis Fe3O4/SiO2/TiO2 untuk Degradasi Methylene Blue. Jurnal Rekayasa Material, Manufaktur dan Energi, 8(1), 59-65. https://doi.org/10.30596/rmme.v8i1.21752
Ningtyas, R. D., Yanti, D. D., Amin, A. K., & Aji, A. (2024). Fabrication of a Fe3O4/CS/AgNPs Composite from Indigenous Iron Sand for Enhanced Methylene Blue Adsorption. Journal of Cluster Science, 35(1), 1463-1480. https://doi.org/10.1007/s10876-024-02594-0
Nirwana, N., Irdoni, I., & Yuniharti, J. (2016). Sintesis Surfaktan Metil Ester Sulfonat dari Palm Oil Methyl Ester dan Natrium Metabisulfit dengan Penambahan Katalis Kalsium Oksida. Jurnal Riset Kimia, 8(2), 125-132. https://doi.org/10.25077/jrk.v8i2.229
Panduwinata, F., Mahmudin, L., & Iqbal, I. (2019). Fabrikasi dan Karakterisasi Sifat Optik Nanopartikel Magnetit Fe3O4 Berbasis Pasir Besi. Gravitasi, 18(1), 1-10. https://doi.org/10.22487/gravitasi.v18i1.13296
Shah, S. I. A., Ahmad, W., Anwar, M., Shah, R., Khan, J. A., Shah, N. S., Al-Anazi, A., & Han, C. (2025). Synthesis, Properties, and Applications of Fe3O4 and Fe3O4-Based Nanocomposites: A Review. Applied Catalysis O: Open, 203, 207049. https://doi.org/10.1016/j.apcato.2025.207049
Syafrian, S., & Sanjaya, H. (2024). Pengaruh Perbedaan Suhu Kalsinasi terhadap Band Gap dan Konduktivitas Listrik Lapisan Tipis CuSnO3. Masaliq : Jurnal Pendidikan dan Sains, 4(2), 508-515. https://doi.org/10.58578/masaliq.v4i2.2751
Syihabuddin, D. M., & Munasir, M. (2024). Green Synthesis Nanopartikel Fe3O4 dengan Bioreduktor Ekstrak Daun Mimba (Azadirachta indica): Aplikasi sebagai Material Fotokatalis Degradasi Methylene Blue. Inovasi Fisika Indonesia, 13(3), 118-123. https://doi.org/10.26740/ifi.v13n3.p118-123
Wibowo, S., Azhar, K. N. A., & Sahanaya, D. A. (2023). Fotodegradasi Methylene Blue Menggunakan Fotokatalis TiO2/Zeolit. Warta Akab, 47(1), 17-21. https://doi.org/10.55075/wa.v47i1.165
Wicaksono, S., Wahfiudin, A., Pramata, A., & Sagadevan, S. (2024). Effect of Fe (III)/ Fe (II) Cation Molar Ratio Variation on Magnetite Fe3O4 Nanoparticles Synthesized from Natural Iron Sand by Coprecipitation Method. MRS Advances, 20(9), 1593-1597. https://doi.org/10.1557/s43580-024-00923z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Della Damayanti, Ridwan Yusuf Lubis, & Abdul Halim Daulay

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.


