Sintesis dan Karakterisasi Nanokomposit Fe3O4/PANI sebagai Komponen Anoda Baterai

Authors

  • Balkis Br Harahap Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sumatera Utara, Jalan Lapangan Golf Nomor 120, Deli Serdang, Sumatera Utara 20353, Indonesia
  • Ridwan Yusuf Lubis Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sumatera Utara, Jalan Lapangan Golf Nomor 120, Deli Serdang, Sumatera Utara 20353, Indonesia
  • Abdul Halim Daulay Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sumatera Utara, Jalan Lapangan Golf Nomor 120, Deli Serdang, Sumatera Utara 20353, Indonesia

DOI:

https://doi.org/10.36312/panthera.v6i1.988

Keywords:

Fe3O4, Coprecipitation, Nanocomposites, PANI, In Situ Polymerization

Abstract

Magnetic materials such as Fe₃O₄ have high potential as conductive materials and energy stores. However, its limited electrical properties require modification through the addition of conductive polymers to improve its performance. The combination of Fe₃O₄ and Polyanillin (PANI) is expected to improve conductivity and capacitance through the formation of Fe₃O₄/PANI nanocomposites. In this study, Fe₃O₄/PANI nanocomposites were synthesized using a co-precipitation method with local iron sand-based materials, then combined through an in situ polymerization method using aniline monomer volume variations of 4 mL, 6 mL, 8 mL, and 10 mL, coded PA1, PA2, PA3, and PA4, respectively. The results of characterization using X-Ray Diffraction (XRD) showed the formation of two main phases, namely magnetite (Fe₃O₄) and maghemite (γ-Fe₂O₃). Scanning Electron Microscopy (SEM) analysis showed that increased volume of aniline monomer resulted in a more homogeneous composite surface, although excessive volume led to overpolymerization. The test results using the LCR Meter showed an increase in capacitance and electrical conductivity values to reach optimal conditions in the PA3 sample, with a crystal size of 50.94 nm, capacitance of 8.9 F, resistance of 1.0 Ω, and conductivity of 127.4 S/m. These results prove that the variation in aniline monomer volume has a significant effect on the structural and electrical properties of Fe₃O₄/PANI nanocomposites. The optimum composition of PA3 shows high potential as an anode material or conductive energy storage electrode that supports the development of environmentally friendly and sustainable energy technology.

Downloads

Download data is not yet available.

References

Asfe, D. H., Marzuarman, M., & Syaiful, A. (2020). Rancang Bangun Alat Ukur LCR Meter Berbasis Arduino Uno. In Seminar Nasional Industri dan Teknologi (pp. 45-53). Riau, Indonesia: Politeknik Negeri Bengkalis.

Basith, A., Syahputra, A., Fitriyadi, S., Rosmaiyadi, R., Fitri, F., & Triani, S. N. (2021). Academic Stress and Coping Strategy in Relation to Academic Achievement. Jurnal Cakrawala Pendidikan, 40(2), 292-304. https://doi.org/10.21831/cp.v40i2.37155

Bruck, A. M., Cama, C. A., Gannett, C. N., Marshcilok, A. C., Takeuchi, E. S., & Takeuchi, K. J. (2016). Nanocrystalline Iron Oxide Based Electroactive Materials in Lithium Ion Batteries: The Critical Role of Crystallite Size, Morphology, and Electrode Heterostructure on Battery Relevant Electrochemistry. Inorganic Chemistry Frontiers, 3(1), 26-40. https://doi.org/10.1039/c5qi00247h

Darvina, Y., Desnita, D., Zainul, R., Laghari, I. A., Azril, A., & Abdullah, M. (2024). Advancements in Fe3O4/PANI Nanocomposite Film Technology: Synthesis and Characterization. Journal of Medicinal and Chemical Sciences, 7(1), 689-702. https://doi.org/10.26655/jmchemsci.2024.5.5

Harsono, H. (2021). Sintesis Partikel Nan Seng Oksida (ZnO) Doping Mangan (Mn) dengan Metode Kopresipitasi dan Karakteristik Kekristalan serta Sifat Magnetik. Tanggerang: Pascal Books.

Nandiyanto, A. B. D., Hadirahmanto, A. T., Ahid, A., Cinthya, F., Jafarian, M. B., Murida, R., Asyiah, S. M. S., & Liswanti, W. (2017). Pengantar Sains dan Teknologi Nano. Bandung. UPI Press.

Nguyen, M. D., Tran, H.-V., Xu, S., & Lee, T. R. (2021). Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Applied Sciences, 11(23), 1-34. https://doi.org/10.3390/app112311301

Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., & Nwanya, A. C. (2022). Anode Materials for Lithium-Ion Batteries: A Review. Applied Surface Science Advances, 9(1), 1-20. https://doi.org/10.1016/j.apsadv.2022.100233

Rahmawati, E., & Putri, N. P. (2024). Sintesis dan Karakterisasi PANI/Fe3O4 Menggunakan Fe3O4 dari Pasir Besi Gunung Galunggung Jawa Barat. Jurnal Inovasi Fisika Indonesia (IFI), 13(2), 45-50. https://doi.org/10.26740/ifi.v13n2.p45-50

Ren, H., Li, H., Barry, P., Zhongling, W., Campos, A. R., Takeuchi, E. S., Masrhchilok, A. C., Yan, S., Takeuchi, T., & Reichmanis, E. (2024). Recent Advances in the Application of Magnetite (Fe3O4) in Lithium-Ion Batteries: Synthesis, Electrochemical Performance, and Characterization Techniques. Chemistry of Materials, 36(19), 9299-9319. https://doi.org/10.1021/acs.chemmater.4c02013

Sumadiyasa, M., & Manuaba, I. B. S. (2018). Determining Crystallite Size Using Scherrer Formula, Williamson-Hull Plot, and Particle Size with SEM. Buletin Fisika, 19(1), 28-34.

Wang, L., Li, Y. R., Li, J., Zou, S., Stach, E. A., Takeuchi, K. J., Takeuchi, E. S., Marshcilok, A. C., & Wong, S. S. (2017). Correlating Preparative Approaches with Electrochemical Performance of Fe3O4-MWNT Composites Used as Anodes in Li-Ion Batteries. ECS Journal of Solid State Science and Technology, 6(6), 3122-3131. https://doi.org/10.1149/2.0231706jss

Yang, X., Chen, Y., Zhang, C., Duan, G., & Jiang, S. (2023). Electrospun Carbon Nanofibers and their Reinforced Composites: Preparation, Modification, Applications, and Perspectives. Composites Part B: Engineering, 249(1), 1-20. https://doi.org/10.1016/j.compositesb.2022.110386

Zulaicha, A. S., Saputra, I. S., Sari, I, P., & Annas, D. (2020). Sintesis dan Karakterisasi Modifikasi Mikropartikel Magnetit (Fe3O4) dalam Pemanfaatan Karat dengan Ekstrak Daun Ilalang (Imperata cylindrica L). Jurnal Jejaring Matematika dan Sains, 2(2), 51-55. https://doi.org/10.36873/jjms.2020.v2.i2.405

Downloads

Published

2026-01-23

How to Cite

Harahap, B. B., Lubis, R. Y., & Daulay, A. H. (2026). Sintesis dan Karakterisasi Nanokomposit Fe3O4/PANI sebagai Komponen Anoda Baterai. Panthera : Jurnal Ilmiah Pendidikan Sains Dan Terapan, 6(1), 417–426. https://doi.org/10.36312/panthera.v6i1.988